
FINITE SPACES AND FINITE MODELS TALK

DORON GROSSMAN-NAPLES

Abstract. When we try to model simplicial complexes using posets, finite

spaces arise as a natural bridge between these two categories. In this talk, I

will describe the theory of these spaces and the nature of this correspondence,
and discuss the resulting theory of finite models.
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1. Introduction

The basic references for this talk are [9] and [2]. I also draw some from [7], which
is an elementary introduction to the subject of finite spaces. A more advanced and
comprehensive introduction can be found in [1].

We would like to model simplicial complexes using posets. To do this, we introduce
an intermediate object: a certain type of space with a nice duality property.

Definition 1.1. An Alexandroff space or A-space is a space whose topology is
closed under arbitrary intersections.

We note in particular that finite spaces are Alexandroff. There are a few pieces
of notation associated with A-spaces.

Definition 1.2. The open hull of a set M in an Alexandroff space is the smallest
open set containing M , denoted U(M). We write Ux for the open hull of a singleton,

and Ûx for Ux \ {x}.

This allows us to begin making the connection with posets. Given an A-space X,
we define a preorder on X by saying x ≤ y if x ∈ Uy. It is easily checked that this
is reflexive and transitive. Conversely, given any preordered set X, we can define a
topology on X by taking the open sets to be those which are downward-closed.

Theorem 1.3. This defines an equivalence of categories from A-spaces to preorders.
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Proof. It is enough to check that a map is continuous iff it is order-preserving. Let
X,Y be preordered sets with the induced A-space structure. Then Y has basis
{Uy}. Take f : X → Y . The preimage of Uy is precisely those elements x such that
f(x) ≤ y. If f is monotonic, then this set is downward closed. Conversely, take
x0, x1 ∈ X with x0 ≤ x1. If f is continuous, it follows that x0 is in the preimage of
Uf(x1), so f(x0) ≤ f(x1). �

Recall that a space is T0 if given two points x and y, one has an open neighbor-
hood not containing the other. This is precisely the same as antisymmetry in the
context of A-spaces.

Corollary 1.4. This defines an equivalence from T0 A-spaces to posets. Moreover,
it defines an equivalence from finite spaces to finite preorders, and T0 finite spaces
to finite posets.

Henceforth, I use these terms interchangably. Observe that we can now equiv-
alently define Ux as the set of points less than or equal to x, and Ûx as the set of
points strictly less than x. We dually define Fx as the set of points greater than or
equal to x, and F̂x = Fx \ {x}. It is a nice exercise to check that Fx is the closure
of {x}, and more generally that the opposite topology on X is the same as the
opposite order on X.

Remark 1.5. It is easy to see that a T1 A-space is discrete.

Remark 1.6. I take a moment to note here that the subspace topology on a subspace
of an A-space is the same as the A-space topology on the associated subposet.

Since we are, after all, homotopy theorists, we are interested in the homotopy
relations on maps of A-spaces. Unfortunately, the general case has some subtleties,
since Top(X,Y ) need not be Alexandroff even if both X and Y are. In the case
of finite spaces, however, the mapping space is finite as well, and we can prove the
following.

Theorem 1.7. The pointwise order on Top(X,Y ) coincides with the compact-open
topology.

Proof. The following proof is from [7].
Let g be a map X → Y , let Ug be the open hull of g, and let Zg = {f | f ≤ g}.

We must show these are equal. If f ∈ Ug, then for each x ∈ X, f(x) ∈ Ug(x),
so f ≤ g. Conversely, if f ≤ g, let C ⊂ X be compact and U ⊂ Y be open with
f(C) ⊂ U ; then for each x ∈ C, g(x) ≤ f(x) ∈ U , so g(x) ∈ U . Thus g(C) ⊂ U . �

This tells us that two maps f, g of finite spaces are homotopic iff there is a chain
of maps f = f0, f1, . . . , fn = g with fi ≤ fi+1 or fi ≥ fi+1 for each i, since a path in
an A-space is a sequence of comparable points. It is true for arbitrary A-spaces that
such a chain of maps induces a homotopy, but not the converse. This is because
the Alexandroff topology is in general finer than the compact-open topology ([6]).

It is convenient for obvious reasons to work with T0 A-spaces specifically. For-
tunately, we may do so due to the following theorem.

Theorem 1.8. Let X be an A-space, and define a relation ∼ by x ∼ y if x ≤ y
and y ≤ x. Then X/ ∼ is an A-space with the quotient order which is T0, and the
quotient map is a homotopy equivalence.
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Proof. The following proof is adapted from [9].
Let f denote the quotient map. First, one observes that f(Ux) = Uf(x) and

f−1(Uf(x)) = Ux; thus x ≤ y iff f(x) ≤ f(y). Now take g : X/ ∼→ X which sends

x to any point in f−1(x). Then g is order-preserving, hence continuous; fg is the
identity; and gf is less than or equal to the identity. �

It is easy to check that this gives a full functor from preorders to posets. Hence-
forth I assume all A-spaces are T0.

2. Relations with homotopy theory

The basic reference for this section is [9].
So far, I’ve talked about posets, so now it’s time to talk about the relation to

ordinary spaces–namely, simplicial complexes and CW complexes. To relate these
to A-spaces, we’ll need a lemma. An open cover is called basis-like if it forms a
basis for a topology weaker than the given one; that is, any finite intersection of
sets in the cover is a union of sets in the cover.

Lemma 2.1 (Locality of weak equivalence). Let f : X → Y be a map, and let O
be a basis-like open cover of Y . Suppose that for each U ∈ O, f : f−1(U)→ U is a
weak equivalence. Then f is a weak equivalence.

The hard part is proving this lemma for a cover by two sets and their intersection,
which is a theorem in §10.7 of [8]. Using this lemma, we can turn A-spaces into
simplicial complexes and vice versa.

Definition 2.2. Let X be a poset. The order complex of X, K(X), is the simplicial
complex whose simplices are chains in X. K acts on monotonic maps in the obvious
way.

Definition 2.3. Let K be a simplicial complex. The face poset of X, X (K), is the
poset of simplices of K under inclusion. X acts on simplicial maps in the obvious
way.

We will define natural maps between these spaces which will turn out to be
weak homotopy equivalences. (In particular, this will imply that every finite poset
is weak homotopy equivalent to its opposite.) Since every space is weak homotopy
equivalent to a simplicial complex, which is often finite in cases of interest, this
suggests that our theory is actually quite broad in its scope. (In fact, our results
about face posets can be extended to regular CW complexes, but I’ll restrict to
simplicial complexes here for simplicity.)

Firstly, let X be a poset. We have a map f : |K(X)| → X given by sending each
open simplex to its smallest vertex; that is, a point in the interior of (x1, . . . , xn)
is sent to mini xi. Then f is continuous, since the preimage of a downwards-closed
set is the union of all the open simplices with a vertex in that set. Note also that f
is a natural transformation. Observe that {Ux | x ∈ X} is a basis-like open cover,
and each Ux deformation retracts to x. We can now apply Lemma 2.1, noting that
f−1(Ux) deformation retracts to the vertex associated to x, to conclude that f is a
weak homotopy equivalence.

Second, let K be a simplicial complex. To construct our natural weak equiva-
lence g : |K| → X (K), we observe that KX is in fact the barycentric subdivision
functor. (This is something you just have to think about for a little bit to believe.)



4 DORON GROSSMAN-NAPLES

Thus applying the previous construction and composing with the subdivision home-
omorphism gives us our g.

Now that we’ve established a connection between A-spaces and simplicial com-
plexes, it would be nice to look at a few examples. For this, we use a tool called the
non-Hausdorff suspension. This is, as one might expect, an endofunctor S of (finite)
(T0) A-spaces which is naturally weak homotopy equivalent to ordinary unreduced
suspension. The construction is simple enough: one adjoins two additional points
a and b (which you can think of as the vertices of a double cone) to X, defining
both to be greater than all the points in X and not comparable to each other.
This non-Hausdorff suspension is the union of two non-Hausdorff cones CX, which
are the same construction with one point rather than two. (Note that since the
non-Hausdorff cone has a maximal point, it is contractible as we would expect.)
Now we define a natural map γX : SX → SX by sending (x, t) to x if −1 < t < 1,
to a if t = −1, and to b if t = 1. That this map is continuous and a weak homotopy
equivalence can be proven by methods similar to those used above. The details can
be found in §3.4 of [7].

Now we can present the examples. Firstly, the nth finite sphere is simply the
nth non-Hausdorff suspension of S0. It looks like a tower of pairs of points having
height n + 1. Second, one can apply the face poset construction to regular CW
structures on various closed surfaces to obtain finite models of these which have
height 3; see [5] for a general construction.

3. Minimal finite models

In the previous sections, we gave constructions for transforming between ordinary
spaces and finite spaces. Now we will formalize this notion.

Definition 3.1. Let X be a space. A finite model of X is a finite T0 space which
is weak homotopy equivalent to X.

Remark 3.2. I take a moment to note here that weak homotopy equivalence is the
best we can hope for here: by Theorem 1.3 of [2], a connected T1 space homotopy
equivalent to a finite space is contractible.

Our previous constructions therefore give us a way of producing a finite model of
any regular CW complex with finitely many cells. Of course, there will in general be
many finite models for a given space; for example, simply take repeated barycentric
subdivisions of a finite regular CW complex, then take the face poset. It is interest-
ing to try to find which of these finite models is the smallest. Unsurprisingly, this
is not easy. It is, after all, a problem of classification of all finite posets up to weak
equivalence. It turns out, however, that the related problem of reducing a finite
space to a space minimal in its homotopy class is quite simple. The theory in this
section was originally developed in [10] and uses the terminology made standard
by May in [7].

Definition 3.3. A beat point for a finite poset X is a point x ∈ X such that Ûx

has a maximum or F̂x has a minimum.

If x is a beat point, say with y the maximum of its underset or minimum of its
overset, then the map X → X \ {x} sending x to y and fixing all other points is a
deformation retract. (It is either greater or less than the identity on X.) Therefore,
we can remove a beat point of a finite space without changing its homotopy type.
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When we do this repeatedly until no beat points remain, the resulting space is
called the core of X. I will call a finite space with no beat points Stong minimal.
(The standard practice is to call such spaces simply minimal, but this results in a
conflict of terminology, as we will see shortly.)

Proposition 3.4. Let X be a Stong minimal finite space and f : X → X a map
homotopic to the identity. Then f is the identity.

Proof. It is enough to show that if f ≥ id or f ≤ id then f = id. We consider the
first case. Certainly f fixes all maximal points. Now inductively assume f fixes
each element of Ûx for some x. Then f(x) ≥ x, but f(x) is also a lower bound for

Ûx. Since X has no beat points, it follows that f(x) = x, so induction shows f is
the identity. The case f ≤ id is similar. �

Corollary 3.5. Two finite spaces are homotopy equivalent iff their cores are home-
omorphic.

Proof. Certainly spaces with homeomorphic cores are homotopy equivalent. Con-
versely, a homotopy equivalence between finite spaces restricts to a homotopy equiv-
alence between their cores, which is a homeomorphism by the previous proposi-
tion. �

We see therefore that a homotopy equivalence between finite spaces consists of
removing and adding beat points. Under the correspondence with simplicial com-
plexes (and regular CW complexes), this corresponds to so-called simple homotopy
equivalence. A simple homotopy equivalence is a homotopy equivalence of CW
complexes obtained by collapsing and expanding cells. Simple homotopy equiva-
lences have an interesting theory of their own, including things like an obstruction
to simplicity for ordinary homotopy equivalences and a variant of the s-cobordism
theorem. This theory is beyond the scope of this talk, but it is developed in [12]
and exposited in [4].

I have given a description of some Stong minimal finite models for all closed
surfaces in [5] which are obtained as the face posets of regular CW structures.
Specifically, we have the following.

Theorem 3.6. The orientable closed surface of genus g has a Stong minimal finite
model with 14g+2 points. The non-orientable closed surface of genus g has a Stong
minimal finite model with 11g + 2 points.

We have described a general algorithm for classifying finite spaces up to weak
equivalence, as well as for reducing them to the smallest poset in their homotopy
class. The corresponding problem for weak homotopy is more subtle, and no general
algorithm is known. However, some techniques have been developed for dealing with
specific cases.

Definition 3.7. A finite space is absolutely minimal if it is minimal in its weak
homotopy class.

Remark 3.8. The standard term for such an object is “minimal finite model”, but
this and the standard term for a Stong minimal finite space lead to such oddities
as spaces which are finite models and minimal finite spaces but not minimal finite
models.

The first result comes from [2].



6 DORON GROSSMAN-NAPLES

Theorem 3.9. For each n, SnS0 is the unique absolutely minimal finite model of
Sn.

There are a few more finite models found (constructively) using the technique of
“poset splitting” in [3].

Theorem 3.10. There are exactly two absolutely minimal finite models of T2 with
16 points, one of which is SS1×SS1, and both are self-opposite. There are exactly
two absolutely minimal finite models of RP2 with 13 points, which are opposite to
each other. There are exactly two absolutely minimal finite models of K2 with 16
points, which are opposite to each other.

Beyond these specific examples, I am not aware of any nontrivial examples known
of absolutely minimal finite models. There are some techniques for reduction of
finite spaces up to weak equivalence ([11]), but these are known not to be sufficient
for constructing absolutely minimal finite models. That said, some lower bounds
for the sizes of these models, or for particular kinds of models, have been derived.
The following results are from [5]. I denote the cardinality of a set S by #S to
avoid confusion with geometric realization.

Theorem 3.11. Let X be a finite model of a closed surface S other than S2 or RP2.
Then #X ≥ max(16, log2(|χ(S)|)). If X has height 3, then #X ≥

√
2|χ(S)− 7|.

The interest of finite models having height 3 is that this includes all models aris-
ing from regular CW structures on closed surfaces, as well as all of those whose order
complexes are surfaces. While it is not completely obvious, these two conditions
are equivalent.

Definition 3.12. A finite manifold is a finite space whose order complex is a
topological manifold. A finite surface is a finite space whose order complex is a
topological surface. A minimal finite surface is a finite space which is minimal
among finite surfaces in its weak homotopy class.

Theorem 3.13. A finite space is a finite surface iff it is the face poset of a regular
CW structure on a closed surface.

If we assume this condition on our posets, we can get some strong lower bounds.

Theorem 3.14. Let X be a finite surface modelling a closed surface S of genus
g. If S is orientable, #X ≥ 2d4√ge + 2g + 6. If S is non-orientable, #X ≥
2d2
√

2ge+ g + 6.

It is possible to construct a finite orientable surface of genus g achieving this
bound in the case that g is a perfect square, or more generally when it is the
product of two integers that are sufficiently close.
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